
Mohammad Hossein Manshaei
manshaei@gmail.com

1393

p2p, DHT, …

Slides derived from those available on the Web site of the book
“Computer Networking”, by Kurose and Ross, PEARSON

2

•  no always-on server
•  arbitrary end systems directly

communicate
•  peers are intermittently

connected and change IP
addresses

examples:
–  file distribution

(BitTorrent)
–  Streaming (KanKan)
– VoIP (Skype)

3

Question: how much time to distribute file (size F) from one server to N
peers?
–  peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
 bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacity u2 d2

u1 d1

di

ui

4

•  server transmission: must
sequentially send (upload) N
file copies:
–  time to send one copy: F/us
–  time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach Dc-s > max{NF/us,,F/dmin}

v  client: each client must
download file copy
§  dmin = min client download rate
§  min client download time: F/dmin

us

network
di

ui

F

5

•  server transmission: must
upload at least one copy
–  time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

 DP2P > max{F/us,,F/dmin,,NF/(us + Σui)}

v  client: each client must
download file copy
§  min client download time: F/dmin

v  clients: as aggregate must download NF bits
§  max upload rate (limting max download rate) is us + Σui

… but so does this, as each peer brings service capacity
increases linearly in N …

6

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate ui= u, F/u = 1 hour, us = 10u, dmin ≥ us

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

v file	 divided	 into	 256Kb	 chunks	
v peers	 in	 torrent	 send/receive	 file	 chunks	

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

8

•  Peer joining torrent:
–  has no chunks, but will

accumulate them over time
from other peers

–  registers with tracker to get
list of peers, connects to
subset of peers (“neighbors”)

P2P file distribution: BitTorrent

v  While downloading, peer uploads chunks to other peers
v  Peer may change peers with whom it exchanges chunks
v  Churn: peers may come and go
v  Once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

9

requesting chunks:
•  At any given time, different

peers have different subsets
of file chunks

•  Periodically, Alice asks each
peer for list of chunks that
they have

•  Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
v  Alice sends chunks to those

four peers currently sending her
chunks at highest rate
§  other peers are choked by Alice (do

not receive chunks from her)
§  re-evaluate top 4 every10 secs

v  Every 30 secs: randomly select
another peer, starts sending
chunks
§  “optimistically unchoke” this peer
§  newly chosen peer may join top 4

10

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

11

•  DHT: a distributed P2P database
•  database has (key, value) pairs; examples:

– key: ss number; value: human name
– key: movie title; value: IP address

•  Distribute the (key, value) pairs over the
(millions of peers)

•  A peer queries DHT with key
– DHT returns values that match the key

•  Peers can also insert (key, value) pairs

12

•  Central issue:
– assigning (key, value) pairs to peers.

•  Basic idea:
– Convert each key to an integer
– Assign integer to each peer
– Put (key,value) pair in the peer that is closest

to the key

13

•  Assign integer identifier to each peer in range
[0,2n-1] for some n.
– each identifier represented by n bits.

•  Require each key to be an integer in same range
•  To get integer key, hash original key

– e.g., key = hash(“Led Zeppelin IV”)
– This is why its is referred to as a distributed “hash”

table

14

•  Rule: assign key to the peer that has the
closest ID.

•  Convention in lecture: closest is the
immediate successor of the key.

•  e.g., n=4; peers: 1,3,4,5,8,10,12,14;
– key = 13, then successor peer = 14
– key = 15, then successor peer = 1

15

1

3	

4	

5	

8	
10	

12	

15	

•  each peer only aware of immediate successor
and predecessor.

•  “overlay network”
16

0001

0011	

0100	

0101	

1000	
1010	

1100	

1111	

Who’s responsible
for key 1110 ?

I am

O(N) messages
on avgerage to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

17

•  each peer keeps track of IP addresses of predecessor,
successor, short cuts.

•  reduced from 6 to 2 messages.
•  possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query

1

3	

4	

5	

8	
10	

12	

15	

Who’s responsible
for key 1110?

18

example: peer 5 abruptly leaves
• peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes 8’s
immediate successor its second successor.
• what if peer 13 wants to join?

1

3	

4	

5	

8	
10	

12	

15	

handling peer churn:
v peers may come and go (churn)
v each peer knows address of its
two successors
v each peer periodically pings its
two successors to check aliveness
v if immediate successor leaves,
choose next successor as new
immediate successor

19

